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A generalization of the quasi-steady theory is proposed, the aim of which is to 
model the most important unsteady effects neglected by the conventional quasi-steady 
assumption. Although this generalized model, referred to as the quasi-unsteady model, 
can be applied in a vast range of flow-induced vibration problems, including classical 
aeroelasticity, it was primarily developed to improve the theoretical prediction of 
the fluidelastic behaviour of a single flexible cylinder positioned in the midst of an 
array of rigid cylinders. In this context, it is shown that the previous improvement 
to the quasi-steady theory proposed by Price & Paidoussis can be considered as 
a particular case of the quasi-unsteady model. Results obtained with the quasi- 
unsteady model are compared to experimental data and to solutions from the Price 
& Paidoussis model; both modal parameter variation with flow velocity and stability 
diagrams are considered. This comparison shows that the quasi-unsteady model is 
a clear improvement on Price & Paidoussis' approach, leading to a more reasonable 
agreement with experimental results and providing refined insights into the physical 
mechanisms responsible for fluidelastic instability. 

1. Introduction 
The quasi-steady theory is frequently used in the study of aeroelasticity (Fung 

1955) and flow-induced vibrations (Parkinson & Brooks 1961 ; Parkinson & Smith 
1964; Parkinson 1972; Blevins 1990). This theory allows static fluid force coefficients, 
determined on a stationary body, to be used to estimate the motion-induced dynamic 
fluid forces on an oscillating body, providing that it is assumed that, at any instant of 
time, the body is moving with a constant velocity equal to the actual instantaneous 
value. It is well-accepted, and physically reasonable, that this assumption is valid for 
high values of reduced flow velocity. (For a body of characteristic length D, oscillating 
in a flow of characteristic velocity Uo with a frequency f ,  the reduced flow velocity is 
defined as U, = U o / f D . )  

However, in the area of flow-induced vibration of cylinder (tube) arrays in cross- 
flow, it is well-known that, in contrast to experimental evidence, the strict quasi-steady 
theory is unable to predict fluidelastic instability of a single flexible tube positioned 
in the midst of an otherwise rigid tube bundle. This difficulty has been overcome 
by Price & Paidoussis (1984a, 1986) who have improved the quasi-steady theory by 
taking into account a flow retardation effect in the form of a time delay between the 
cylinder displacement and the resultant change in the fluid forces. 
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This idea of introducing a time delay in the analysis of the fluidelastic instability of 
a cylinder array is also shared by other models, not in the framework of quasi-steady 
theory. The pioneering work of Roberts (1966) and the analytical ‘first principles’ 
model of Lever & Weaver (1982, 1986a,b) provide two examples. By taking into 
account such a flow retardation effect, both Price & PaYdoussis and Lever & Weaver 
were able to simulate fluidelastic instability of a single degree of freedom (SDOF) 
tube array, i.e. a single flexible tube vibrating in the lift direction within an otherwise 
rigid tube array subject to cross-flow. However, although the qualitative agreement 
of these models with experimental data seems rather satisfactory, the quantitative 
accordance is not as good (Price & Paidoussis 1984a, 1986; Lever & Weaver 1982, 
1986; Yetisir & Weaver 1988; Granger, Campiston & Lebret 1993; Price 1993). 
Furthermore, the physical significance of the flow retardation effect still remains 
unclear, and different authors have given different interpretations : Price & Paidoussis, 
similarly to Simpson & Flower (1977), have postulated that the time lag between the 
tube motion and the resultant change in the fluid forces is due to retardation of the 
flow approaching the cylinder in the stagnation region, while Lever & Weaver have 
assumed that a mass flow redistribution occurs which lags behind tube motion due to 
fluid inertia. Paidoussis & Price (1988) attribute this effect to a time delay associated 
with reorganization of the viscous wake flow. It is very likely that this variety of 
interpretations is essentially due to the rather intuitive nature of the arguments used 
so far to account for a time delay in these models. Consequently, there seems to be a 
need for refining the theoretical models in order to improve both the agreement with 
experimental results and our understanding of the flow retardation effect and, more 
generally, of the basic physical phenomena responsible for fluidelastic instability of 
SDOF tube arrays (Price 1995). 

In the present paper, a generalization of the quasi-steady theory is proposed. This 
generalized theory has been derived from a novel approach, compared to Price & 
Pa‘idoussis’ model. The main objectives of this development were: (i) to achieve a 
far-reaching extension of quasi-steady theory which takes into account all the most 
important unsteady effects neglected under the strict quasi-steady assumption; (ii) to 
build up this generalized model on firm theoretical grounds, starting from an analysis 
of the basic equations governing fluid motion; (iii) to reconsider the flow retardation 
effect and to develop a formal basis in theory for this effect; (iv) to improve the 
theoretical agreement with experimental data for SDOF tube arrays. 

Theory is presented in 92. First, an analysis of the continuity and Navier-Stokes 
equations is used to develop a model for the fluid forces induced by an impulsive 
motion of a body subject to cross-flow. Then, the motion-dependent fluid forces 
on a body undergoing any general motion are derived from this analysis using the 
convolution integral. Section 3 deals with the application of this theory to SDOF 
tube arrays. The flow retardation effect is reconsidered in 93.2. In 93.4, the re- 
sults obtained with this new model are compared to those of Price & Paidoussis’ 
model and to experimental data. Finally, 94 provides some further insights into the 
physics of the phenomena involved and proposes a conjecture concerning multiple 
flexible tube arrays, the aim of which is to suggest a direction for future research work. 

2. A ‘quasi-unsteady’ model for motion-dependent fluid forces 
In this section, we consider a two-dimensional flow, in the (x, y)-plane, around a 

rigid body bounded by r(t), moving in a fluid domain bounded by TO, see figure 1. 
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FIGURE 1. Flow around a body moving in a closed fluid domain. 

For simplicity, it is supposed that the flow velocity on the TO boundary is parallel 
to the x-axis and is denoted by UO = ( V O , ~ ) ~ ;  X ( t )  = ( X ,  Y ) T  and V ( t )  = (Vx, 
denote the displacement and velocity vectors of the body. 

2.1. Fluid forces induced by impulsive body motion 
It is supposed that the body is at rest for t < 0, at a position r(O), and that it is 
subjected to a steady flow of velocity U 1  and pressure PI. At t 3 0, an impulsive 
translational movement is imposed on the body, 

v = V , ) H ( t ) ,  x = VOtH( t ) ,  (1) 
where H ( t )  is the Heaviside step function. It  is assumed that V O  is sufficiently small 
to allow small-amplitude approximations to be applied. For t > 0 the velocity and 
pressure fields are presumed to be unsteady and will be denoted by U2 and P2. 

The (U2, P2) fields are therefore governed by the continuity and unsteady Navier- 
Stokes equations, 

ijU2 1 v .  u,=o, - + U 2 '  vu, = -- V P ,  + vv2 u2, 
at P 

associated with the boundary conditions 

U 2  = V O  H ( t )  on r(t);  U? = UO on T O .  (2b) 
On the other hand, the velocity and pressure fields ( Ul,  PI) satisfy the continuity and 
steady Navier-Stokes equations, with boundary conditions 

U 1  = 0 on r(0); U ,  = U0 on T o .  (3) 
For this type of problem, frictional forces on the body are considered to be 

negligible compared to forces due to the pressure. Hence, the fluid forces F ( t )  acting 
on the body ( t  3 0) may be expressed as 

F;(t)  = f - 0  + F l ( t )  7 (4) 

where F O  and F I  are the steady and unsteady fluid forces due to PI and P,, 
respectively. The steady fluid forces may be expressed in terms of dimensionless force 
coefficients, via 

Fo = p U i  DL C,, C,s = (CD, C L ) T ,  ( 5 )  
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where D and L are characteristic dimensions of the body in and normal to the (x,y)- 
plane (e.g. the diameter and length of a circular cylinder); CD and CL are, respectively, 
the steady drag and lift coefficients for the body at its initial position. 

In what follows, we shall analyse the evolution of the flow for t 2 0, thereby 
obtaining an analytical model for ihe unsteady forces F1 induced by the impulsive 
motion of the body. 

Consider first the situation at the onset of movement of the body, i.e. at t = O+. At 
t = Of, the motion-induced flow perturbation is irrotational. This is a well-established 
result about impulsively generated flows (see, e.g., Lamb 1932; Sears 1949; Lighthill 
1953; or Batchelor 1967). For the sake of completeness, a quick derivation is given 
below. 

Introducing the difference in flow velocity, u = U ,  - U1, into equations (2) and 
non-dimensionalizing these equations, order-of-magnitude considerations detailed in 
Telionis (1981) show that, for t = O+, equations (2a)  may be approximated by 

au 1 v . u = o ,  ---- - V P ,  
a t  P 

Consequently, since u is zero for t < 0, equations (6 )  imply that u is irrotational at 
t = 0' and may be expressed in terms of a potential function, 4, as u = -V4. 

The velocity-pressure fields (u,P*) at t = O+ are thus fully determinable from a 
solution for 4 of the Laplace equation. This solution is obtained by taking into 
account the impermeability condition on the surfaces r(O+) and r,: 

where n is the outward normal on the boundaries. 
Lastly, equations (6b)  and (7) show that the initial irrotational flow perturbation 

is entirely governed by body acceleration and therefore induces unsteady fluid forces 
equal to added-mass terms in quiescent fluid. These forces, Fy(t) ,  may thus be written 
as 

where C, is the matrix of the added-mass coefficients in a quiescent fluid, and 
X = d2 X,/dt2. 

Comparison between boundary conditions (7) and (2b), (3) shows that at t = O+ 
the no-slip condition on the surface of the body is violated in the irrotational flow 
generated by the impulsive movement. A discontinuity thus exists in the tangential 
flow velocity on the boundaries of the fluid domain, which may be interpreted, in 
terms of vorticity, as an infinitely thin layer of vortices distributed on the surface. 
For t > O+, boundary layers will develop in the neighbourhood of the surfaces so as 
to satisfy the no-slip condition, and vorticity will diffuse within these thin layers. In 
regions of adverse pressure gradient where the irrotational flow reaches zero velocity 
on the solid boundary, the boundary layer will separate because of viscous friction, 
which diminishes the kinetic energy of the fluid. Following separation, a portion of the 
vorticity, initially confined to the boundary layer, will be convected downstream by 
the flow through large-scale vortices generated by recirculation in the neighbourhood 
of the separation points. The diffusion-convection process of the vorticity interacts 
with the initial velocity field, U1, and leads to a fundamental reorganization of the 
flow, resulting in unsteady fluctuations in the pressure field P2 for t > 0+. A well- 
known example of these phenomena is the generation of circulation around an airfoil 
subject to a real flow (Kundu 1990). 

F y = - i p D 2 L C , X ,  (8) 
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In order to study the influence of movement on the pressure field for t > O+, 
equation: (2)  are recast in terms of a reference frame embedded in the rigid body; 
writing U z  = I!'? - V o ,  this leads to (e.g. see Panton 1984): 

A A h 

U 2 = 0  on r(t);  U ~ = Z J O - U ~ - V O ~ ~ T ~ .  (9c) 
Equations (9) show that the effect of the movement for t > O+ on the pressure 

field P2 is the same as that of a q2asi-static displacement of the body subjected to an 
incident uniform flow of velocity U O ;  thus, for t > 0+, the motion of the body will not 
generate additional unsteady terms. The unsteadiness of the ( U 2 ,  P2) field will uniquely 
be due to the flow reorganization following the convection-diffusion of the vorticity 
produced by the initial movement. It is supposed. therefore, that this reorganization 
leads to a new steady state after a sufficiently long time, i.e. at t >> D / U O ,  as evidenced 
by an order-of-magnitude analysis of equation (9b). Hence, taking both equation ( 5 )  
and the small-amplitude approximation into account, equations (9) imply that, for 
z = U o t / D  + 1. an asymptotic value, Ff ,  of the motion-induced fluid forces, F l ( t ) ,  
can be expressed as 

F 2 f p U i L D  (6 * 7 + V C ,  * w) , (10) 

where 

- _ _ _  7 _ _  7= ( V . , ,  v,) , w =  (x. Y ,  qT : 

in which LY is the apparent angle of attack (figure l), x 'v vy, and x = X / D ,  

This expression is valid only for z >> 1, since the change in the force coefficients 
is then perturbed by vorticity-induced unsteady effects due to reorganization of the 
flow. In such a case, equation (10) may be replaced by 

- 
Y = Y / D ,  V ,  = V,/Vo, Fy = V,./Uo; X = x / D ,  7 = y / D .  

F';'(t) = $ p U i  LD [6 . V +  6 C(W)] ; f > O', (11) 

in which 

6 C(W) = { (5 C,,y(X) + 6 CDy(T) + 6 CDY(VY), 6 C, , (X)  + 6 C,J(Y) + 6 CLE(Fy)}T  , 
_ _ _  

where the terms 6 Ckz(Z)(k  = D , L ;  z = x ,  y ,  cx; Z = X ,  Y ,  V y )  are linear opera- 
tors (Fung 1955) transforming the input z(z), e.g. X(z), to an output representing the 
variation of the fluid force coefficient Ck at T ,  when Z = z(z) - the other parameters, 
e.g. 7 and 7, for z = X ,  being kept equal to zero. According to equation (lo), 
the condition 

6 C(W) 'v v c, a w (12) 
must be satisfied for an impulsive movement, as T -+ +a. _ _  - - 

For z = x and 2 = Vy, as V, .  = constant = VOy for t > 0+, in view of equation 
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(12) we must have 
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_ _  
Also, for z = x, y and z = X, Y ,  if the body displacement is a step function of 

the type X ( t )  = X o H ( t ) ,  then 

By approximating the real displacement, X ( t ) ,  by a succession of small steps, 
applying the principle of superposition and integrating by parts, equation (14) finally 
leads to 

_ _  
(15) 

ack  6 ckz(z) = --g hkz * z ; Z = X, y ; z = x, Y ,  ; k = D, L ; 

where 

J o  
is the appropriate convolution integral, and 

hkZ(7) = d @kz/dz  + @ k z ( O )  6(7), (17) 
6(z) being the Dirac delta-function. 

Equations (ll), (13) and (15) may next be expressed in the Laplace domain, in 
terms of the Laplace variables s (related to t )  and sr = s D / U o  (related to T), as 
follows : 

with 
~ y ( s )  = P ~ 0 2  L Cf(sr )X(s )  3 (18) 

C,(sr) = sr Df(sr) + Kf(sr) 3 

in which the Hkz(sr) are the Laplace transforms of the hkz(Z), and Hkz(sr) = 
sr @ k z ( S r )  ; k = D, L ; z = x, y, a. The inverse transform of equation (18) then 
allows us to express F T ( t )  in the form 

FT( t )  = p U i  L D ( D f  *F + K f  * X), (19) 
in which 

and x = (X,Y)T. 

of the body, is thus obtained by setting 
A general unsteady model for the fluid forces F 1 ,  induced by an impulsive movement 

Fl(t) = F ; ( t )  + F W )  , (20) 

where F4 is given by equation (8) and F y  is defined by equation (19). 
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2.2. Dynamic j u i d  ,forces induced by an arbitrary body motion 
For an impulsive movement, equations (8) and (18) show that F 1  may be written as 
a function of X in the following form in the Laplace domain: 
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F1 (s) = H F S ( S )  W S ) ,  (21) 
in which 

HFS(S)  = -4 p D2L C, s2 + p U i  L C,(S,) .  
H F S  may thus be interpreted as the transfer-function matrix of the linear dynamical 

system modelling the fluid-structure interaction system. It is well known (Fung 1955; 
Friedly 1972) that the transfer-function matrix is invariant, whatever the input, X ( s ) .  
If we consider once more the problem of 92.1, but this time for an arbitrary movement 
of the body, X ( t ) ,  it is directly evident, therefore, that equations (8) and (18)-(21) 
apply to an arbitrary movement and hence completely characterize the fluid forces 
induced thereby. The model thus obtained will be referred to in what follows as the 
quasi-unsteady model, as it constitutes an extension of the quasi-steady model and 
it accounts for the two types of unsteadiness due to the movement of the body: 
(i) the forces FY, dependent on the acceleration of the movement only and arising 
from an entrainment effect of the particles in the vicinity of the body, identical to 
the added-mass effect for a quiescent fluid; (ii) the unsteady component, i.e. the non- 
quasi-steady one, of the forces, F;", due to the reorganization of the flow, following 
the diffusion-convection of the vorticity layer created on the surface of the body 
after a change in its velocity. The unsteady component of FY is characterized by the 
convolution integrals involving the generalized functions hki(T), with k = D, L and 
z = x, y, a, in equation (19). The hkz terms model the impulse responses of the flow, 
in terms of the dynamical fluid force coefficients. They are related via equation (17) 
to the transient functions, @ k z ,  representing the evolution of the fluid force coefficient 
corresponding to step-function changes in displacement or velocity of the body. 

2.3. Transient function modelling 
By setting hkz( t )  = 6(z), i.e. &(z) = H ( t ) ,  in equation (19), one recovers from FY 
the quasi-steady theory solution (see, e.g. Blevins 1990). This result is consistent with 
the fundamental assumption of quasi-steady theory that steady flow is established 
immediately, as soon as the body has experienced a change in velocity. 

In the quasi-unsteady model, the vorticity-induced unsteadiness discussed in $2.1 
is accounted for by considering transient functions, Q k z ( ~ ) ,  that evolve continuously 
towards 1 for z ---f +a. They are modelled as follows: 

@kz(7) = [l - 4kz(7) ]  H ( 7 )  ; k = D, L ; z = X, y ,  O! ; (22a) 
with 

N 

& ( T )  = C aie-6~r , (22b) 
i= 1 

in which the CI, and 6, also depend on k and z implicitly. 
This modelling can be justified mathematically by invoking Schwartz's theorem 

stating that any causal continuous function tending to zero as t -+ So0 may be 
approximated, as closely as desired, by a linear combination of decaying exponentials 
(Schwartz 1972). 

Moreover, a physical argument can be developed from the unsteady aerodynamic 
theory as follows. Consider the transverse oscillations of a thin airfoil, subject to 
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FIGURE 2. A thin airfoil performing vertical-translation oscillations in a two-dimensional in- 
compressible flow: (a)  the real problem; ( b )  the approximation used in unsteady aerodynamic 
theory. 

an incompressible flow of incident velocity, UO, parallel to the x-axis (see figure 2). 
Applying the quasi-unsteady theory of 992.1-2.2 to this problem yields the following 
expression for the motion-induced fluid force in the y-direction: 

Fl,(t) = -$ p D 2 L  C, Y + p U i L D  (dC,/&) hLx * V,,  (23) 
where C, stands for the coefficient of added-mass in the y-direction. Equation 
(23) turns out to be identical to the expression derived analytically with the aid of 
potential flow with singularities, if the transient function, QLa, is taken as the Wagner 
function of unsteady aerodynamic theory (Fung 1955). Furthermore, W.P. Jones has 
shown that equations (22) with N = 2 provide a very good approximation of the 
Wagner function (Fung 1955). On the other hand, to estimate the fluctuating lift force 
on a square-section cylinder in transverse oscillation to the oncoming flow, Luo & 
Bearman (1990) have tentatively applied unsteady aerodynamic theory by modifying 
the values of the coefficients of added mass, C,, and of the static-lift derivative, 
dC,/aa, to adapt them to their geometry. They thus obtained, for that particular 
case, an expression formally identical to that of quasi-unsteady theory, in which the 
transient function djLa(r) is modelled by the Wagner function. This model allowed 
them to improve agreement between theory and experiment, uis-u-uis the quasi-steady 
model of Parkinson (1972) and Parkinson & Smith (1964). Taking into account 
the differences in the two flows (around a thin airfoil and around a square-section 
cylinder), Luo & Bearman’s results appear to show that the transient function model 
as suggested by unsteady airfoil theory should have a certain degree of generality and 
is not a special case applicable only to airfoils. 

Admittedly, the expansion defined by equations (22) is not the only possible 
approximation of the transient functions, d j k z ( r ) .  In some cases, problems may 
arise, associated with the rate of convergence and the necessary number of decaying 
exponential terms for a satisfactory approximation. In particular, in the case of 
oscillatory transients (e.g. transient response of free-surface flows in the context of 
vibrations of marine structures (Janardhanan, Price & Wu 1992)), the family of 
decaying exponential functions may judiciously be augmented or replaced by damped 
sinusoidal functions. Nevertheless, in the following, we have chosen to stay as close 
as possible to unsteady aerodynamic theory, in view of Luo & Bearman’s results. 
We therefore consider the model defined by equations (22), and we limit ourselves 
to considering only the first two orders: N = 1 and 2. This has the additional 
advantage of limiting the number of non-dimensional parameters (ai, Si) implicated 
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FIGURE 3. A SDOF tube array (square in-line geometry) 

in the representation of the unsteady effects associated with the process of diffusion- 
convection of vorticity. 

2.4. Is the quasi-unsteady model an unsteady model? 
Before closing the theoretical section, it is of interest to make the following point. In 
the foregoing, it was supposed (cf. $2.1) that the asymptotic behaviour of the flow 
around a fixed body or one with a constant velocity was steady. When this is not the 
case, e.g. for a turbulent flow or a flow with vortex shedding, the foregoing theory may 
nevertheless be applied by considering that the movement of the body generates a 
perturbation to the mean steady flow. Thus, possible interactions between the motion 
of the body and the unsteady part of the asymptotic flow are neglected. Although this 
assumption is not always explicitly stated in the majority of the models for fluidelastic 
coupling, e.g. in quasi-steady theory (Parkinson 1972; Blevins 1990) and its extensions 
(Price & Pdidoussis 1984a; Simpson & Flower 1977), unsteady aeroelasticity (Fung 
1955), Lever & Weaver’s (1982, 1986a,b) and Chen’s (1987) unsteady models for 
tube arrays, etc., this assumption is implicitly made in all of them. In these theories, 
when the unsteady part of the asymptotic flow is taken into account, it is considered 
as another excitation mechanism, distinct from fluidelastic coupling as such, and 
described by another model, e.g. as turbulent buffeting excitation or vortex-induced 
excitation (Blevins 1990; Chen 1987; Corless & Parkinson 1988). The quasi-unsteady 
model is therefore an unsteady model for fluidelastic coupling, in the sense just 
defined. 

3. Application to SDOF tube arrays 
In this section, the quasi-unsteady model is applied to the case of a single flexible 

cylinder, vibrating in the lift direction, y ,  in the midst of an array of rigid cylinders 
subjected to a cross-flow (figure 3). Here, the incident reference flow velocity UO is 
taken to be the interstitial flow velocity U p  = U , ( P / D ) / ( P / D  - l), where U,  is the 
velocity upstream of the tube array. 

3.1. Equation of motion of a SDOF tube array 
Taking account of symmetry in this system permits setting CL = dCL/dY = dCD/aY = 
dCL/c?x = ?CD/i ix = 0, which were confirmed by experiment (Price & Paidoussis 
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1986). Therefore, according to equations (8), (19) and (20), the fluidelastic force in 
the y-direction, i.e. the force induced by the movement of the tube on itself, can be 
expressed as follows: 

Fly(t) = -; p D 2 L  C, Y + i p Up’ L D  hLy * T - CDV, (24) 

where hLy is defined by equations (17) and (22). 
Hence, denoting by M,, C, and K ,  the modal mass, damping and stiffness in the 

mode concerned for vibration in the lift direction, the equation of motion may be 
written in the Laplace domain as follows: 

for a flow velocity Up,  in which 3, is the eigenvalue of the coupled fluid-structure 
system; Me = M s  + ipD2LC,,, and ;lr = I D / U p .  The value of 3, is related to 
the eigenfrequency, w( Up) ,  and modal damping coefficient, ( ( U p ) ,  of the mechanical 
system under flow conditions by 

where j = fl. 
dimensionless form : 

Taking into account equations (22), equation (25) may be re-written in the following 

where wro = oo D / U p  , 00 = ( K s / M e ) ’ / 2 ,  ( 0  = CJ2 Me 00 , mr = Me/p D2L.  
Equation (27) may be utilized as a basis for (i) estimating the parameters (ai, Si) 

of the quasi-unsteady model from a ‘reference dynamical test’ (see §3.3), and (ii) for 
predicting the fluidelastic behaviour of any SDOF tube array, once the parameters 
(ai, Si) have been determined (see 53.4). Before illustrating these points, the quasi- 
unsteady model for SDOF tube arrays will be compared to Price & Paidoussis’ model 
and the problem of the flow retardation effect will be reconsidered. 

3.2. Time delay versus memory eflect 
The single-degree-of-freedom (SDOF) model of Price & PaYdoussis (1986) can be 
retrieved from equation (24) by setting hLy(t)  = S ( t  - p),  where p is the non- 
dimensional time delay introduced by Price & Paidoussis to improve quasi-steady 
theory. The transient function representing the evolution of the lift coefficient as a 
result of a step-function change in the y-direction displacement is thus modelled as a 
lagged Heaviside step-function, i.e. @yY(z) = H ( t  - p). Consequently, according to the 
Price & Paidoussis model, the flow will not respond to a step-change in displacement 
for z < p ;  it will attain instantaneously its steady state at time z = p. Physically, 
this behaviour does not appear to be too realistic and one would rather expect a 
continuous evolution of the lift coefficient during the transient phase as modelled by 
equations (22). As seen in $2.1, this evolution is basically due to the fact that a change 
in the velocity of the cylinder induces on its surface a thin vorticity layer, which is 
later diffused into the boundary layer and then transported downstream by the mean 
flow. This phenomenon eventually leads to an unsteady perturbation in the velocity 
and pressure fields in the neighbourhood of the cylinder, which decays continuously 



The quasi-steady model applied to vibration of tubes 173 

t I 

FIGURE 4. Transient variation of lift coefficient, 6CL,(t) ,  induced by a step displacement 
Y ( t )  = YoH( t ) :  (a) Y ( t ) ;  (b)  quasi-steady theory; (c) Price & Pa'idoussis model; (d) a continu- 
ous variation typical of the quasi-unsteady model (order l), 6CLyo = (dCL/i3y)yo, At = p D / U p .  

with time as the vorticity is convected downstream. In the end, a new steady state is 
reached, when the motion-induced vorticity has been transported sufficiently far from 
the cylinder by the mean flow, so that its influence on the pressure at the cylinder 
surface becomes negligible. This is the physical mechanism modelled by equations 
(22). Figure 4 shows the different transient behaviour of the lift coefficient for the 
quasi-steady, Price & Paidoussis, and quasi-unsteady models, respectively. 

For an arbitrary movement of the cylinder, as the quasi-unsteady model considers 
a continuously evolving transient function the convolution integral in equation (24) 
implies that the motion-induced fluid force depends on the whole past time history of 
cylinder displacement. This models the fact that, for a general motion, the fluid force 
at a given instant involves the superposition of vorticity-induced perturbations due 
to the ensemble of changes in the cylinder velocity at earlier times. In contrast, Price 
& Paidoussis (1986) assumed that the motion-induced fluid force at time t should 
depend solely on the particular value of cylinder displacement at time t - @ / U p .  

Therefore, rather than a delay effect, as previously conceived in the earlier models, 
the quasi-unsteady model proposes a memory efec t  in the flow, the physical origin 
of which arises from the diffusion-convection process of the vorticity induced by 
successive changes in the velocity of the body. This, in retrospect, may also explain 
why purely potential-flow models are incapable of predicting oscillatory fluidelastic 
instability (Paidoussis, Mavriplis & Price 1984). 

3.3. Model parameter estimation: an inverse method 
A 'reference dynamical test' is considered, i.e. a dynamical test for a given array 
geometry in which the flexible tube is free to vibrate under the action of flow. For 
different flow velocities, the vibratory response of this tube is measured, determining 
thereby the variation with U p  of the modal parameters u and [. A signal processing 
method enabling this type of estimate has been described by Granger (1990). For in- 
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line square and normal triangular arrays, such data have been obtained by Granger 
et al. (1993). The curves w(Up)  and [ ( U p )  enable the determination via equation 
(26) of a set of values of A,., which are solutions of equation (27). The geometrical 
and dynamical characteristics of the mechanical system being known, so are the 
parameters wr0, 50 and m,. Consequently, if aCL/ay and CD are known in advance, 
the parameters mi, di, i = 1,N, of the quasi-unsteady model may be calculated with 
equation (27) from a selected set of N values of A,, associated with N distinct flow 
velocities. 

In the case of the first-order model ( N  = l), it is even possible to obtain approximate 
values of a1 and 61 via equation (27) with just one measurement, that of the critical 
flow velocity, Up,, i.e. the velocity at which fluidelastic instability occurs in the 
reference dynamical test. This is achieved by using the identity [(Up,) = 0 and the 
approximation o( Up,)  N 0,. This approximation is justified in practice by the weak 
variation of co with Up, (see e.g. figures 5 and 6). The following approximate formulae 
are thus obtained: 

in which o , ~  = ooD/Up, .  
As described by Price & PaYdoussis (1984a,b), aCL/ay and CD may be determined 

by static tests. For the square in-line array, the data from Price & Paidoussis (1986) 
will be used, taking into account that they were non-dimensionalized with respect to 
U,. Defining a = Up/U, ,  for P / D  = 1.5 and with the notations of this paper we have: 
aCL/ay = -73/a2, CD = 2.3/a2. For the normal triangular array, new tests conducted 
at McGill University with P / D  = 1.375 have given dCL/ay = -19.2/a2, CD = 3.8/a2. 

Choosing therefore a point close to fluidelastic instability in the data of Granger 
et al. (1993), equation (27) gives the estimations 

a1 = 1.097, 

al = 1.418, 

61 = 0.039 

d1 = 0.141 

for the square in-line array, and 

for the normal triangular array. 

For the second-order ( N  = 2) model, equation (27) necessitates knowledge of (a,[) 
for two points of flow velocity in the reference dynamical test. By utilizing as the first 
point one close to the onset of fluidelastic instability and the second point roughly 
half-way in the data of Granger et at. (1993), we obtain 

a1 = 1.134, 61 = 0.084, a2 = -0.121, 6 2  = 1.723, 

a1 = 2.172, 61 = 0.48, a2 = -2.684, 6 2  = 2.72, 

for the square in-line and normal triangular array, respectively. It is noted that the 
values of a1 and 61 are not modified too much in going from the model of order 1 
to that of order 2 for the square in-line array, which is not the case for the normal 
triangular array. 

3.4. Theoretical prediction and comparison with experimental data 
With the model parameters determined, equation (27) may be used to predict the 
dynamical behaviour of a single-degree-of-freedom tube array for any given m,, 50, 00 

and D. Thus, the specification of core corresponding to a given value of Up allows 
the determination of A,, and hence of o ( U p )  and 5(Up) .  We may thus predict the 
variation of the modal parameters o and [ as functions of the flow velocity and, via 
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[ ( U p , )  = 0, determine the critical flow velocity, Up,., for the threshold of fluidelastic 
instability. 

Here, the results obtained in this manner will be compared with those of Price 
& Paidoussis’ model and with experimental data. Two types of comparisons are 
made: one in terms of the variation of w ( U p )  and [ ( U p )  for U p  < U,,, and the 
other in terms of the instability charts of Up,,. = U p , / f s D  versus the mass-damping 
parameter A, = M,$ S / p  D’L, for several geometric configurations (i.e. values of P I D ) ;  
(6 and f s  here represent the logarithmic decrement and natural frequency (in Hz) 
of the tube in air). The first type of comparison permits, for a limited number of 
geometries, the refined analysis of the development of fluid-structure interaction, up 
to the critical flow velocity. The second type of comparison takes into account but 
the final result, i.e. fluidelastic instability; however, in view of the large number of 
geometric configurations that could be compared, it nevertheless allows a global view 
of the validity of the models. 

To ensure that this second type of comparison is reliable, it is necessary that the 
experimental points appearing in these instability graphs have been analysed in the 
same way and they correspond to homogeneous and representative configurations as 
compared to the system for which the model has been developed, for this latter 
then to predict a kind of averaged behaviour. For this reason, in the instability 
graphs, experimental data obtained with only a single flexible cylinder in the midst 
of a rigid tube array have been considered exclusively. In contrast, among the 
data selected, some come from direct observation of fluidelastic instability (Price 
& PaYdoussis 1989; Andjelic & Popp 1989; Granger 1990: Granger et al. 1993; 
Lever & Rzentkowski 1993; Nakamura & Fujita 1993), whereas others were obtained 
indirectly from measurements of the fluidelastic forces (Tanaka, Takahara & Ohta 
1982; Teh & Goyder 1988). Furthermore, in some cases the tube could only vibrate 
in the lift direction (Tanaka et al. 1982; Teh & Goyder 1988; Lever & Rzentkowski 
1993; Nakamura & Fujita 1993), while in others it could also vibrate in the drag 
direction (Andjelic & Popp 1989; Price & Paidoussis 1989; Granger 1990; Price & 
Zahn 1991; Lever & Rzentkowski 1993: Granger et al. 1993). Two configurations, 
one for each geometry, were studied and compared in terms of variations of the 
modal parameters, w and i, as functions of flow velocity. They come from Granger 
et al. (1993) and correspond to a single flexible cylinder centrally located in the midst 
of a rigid tube array in water flow; they are the same experimental data as those 
used in 43.3. 

The experimental evolution of the modal parameters for the two configurations 
studied is compared in figures 5 and 6 with those predicted by (a)  the Price & 
Paidoussis model and ( b )  the quasi-unsteady model of orders 1 and 2. For the former 
model the calculations have been conducted with p = 1, a parametric study having 
confirmed that the ‘best’ results were in fact obtained with this value, as previously 
found (Price & Paidoussis 1984~).  Figures 5 and 6 show that the predictions by 
the Price & Paidoussis model are qualitatively correct (the tendency toward lower 
frequency with increasing U p  and the corresponding increase-decrease in the damping 
coefficient prior to the onset of instability), but these effects happen much too 
fast as U p  is increased compared to the experimental behaviour; this leads to an 
underestimation of the critical flow velocity. It is certainly possible to adjust the value 
of p in Price & Paidoussis’ model so as to obtain better agreement in the critical flow 
velocity, but then the qualitative agreement with experiment in the subcritical region, 
i.e. for U p  6 U,,., is lost. It should be noted that similar conclusions have previously 
been reached with respect to the Lever & Weaver model (Granger et al. 1993). In 
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FIGURE 5. SDOF tube array. Results for square in-line geometry in cross-flow showing modal 
parameter variations with flow velocity: (a) resonance frequency and (b) modal damping ratio 
versus Up.  W ,  experimental results; - - , Price & Paidoussis model; ~ , quasi-unsteady model 
(order 1); -.- , quasi-unsteady model (order 2) .  
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FIGURE 6. As figure 5 but for normal triangular geometry. 

contrast, the quasi-unsteady model can yield a correct critical flow velocity, as well 
as qualitatively satisfactory behaviour in the subcritical zone. 

In the case of the square in-line array, there is not a great deal of difference in the 
results of the order-1 and order-2 quasi-unsteady models. Apart from the qualitative 
agreement, good quantitative agreement with the experimental data is obtained for 
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U p  2 2.5 m s-'; for U p  < 2.5 m s-l, however, the quasi-unsteady model tends to 
overestimate the damping coefficient - even though the predicted values are of the 
right order of magnitude. For the normal triangular array, the difference between the 
predictions of the order-1 and order-2 models is more marked. The order-2 quasi- 
unsteady model yields an evolution which is quantitatively correct for U p  > 3 m s-' 
approximately, whereas the order 1 model tends to underestimate the coefficient of 
damping by a factor of 3.5 approximately, e.g. 2% instead of 7% at U p  E 3 m s-'. 
For U p  < 2 m s-', both order-1 and order-2 models tend to overestimate the damping 
coefficient, though the predictions are still of the right order of magnitude. 

Figures 7 and 8 show the comparison of the experimental fluidelastic instability 
data to the predictions of the Price & Paidoussis and quasi-unsteady models for the 
square-in line and the normal triangular arrays, respectively. 

For the square in-line array (figure 7) and A, d 3, most of the experimental results 
are mutually coherent, except those of Price & Paidoussis (1989) and that of Granger 
et al. (1993) corresponding to a flexible tube in the front row of the array. These 
points are clustered around a horizontal straight line, lying below the other points, 
with Up,, N 2.8. For A, > 3, the various data of Teh & Goyder (1988), Lever & 
Rzentkowski (1993) and Nakamura & Fujita (1993) are in good agreement, Price 
& Paidoussis' data are sensibly higher, while the semi-empirical ones by Tanaka et 
al. (1982) are in between. The results obtained by the quasi-unsteady model of 
orders 1 and 2 are not very different. They are able to fit well the average trends 
of the experimental data. If the Price & Paidoussis and the first-row Granger et 
al. experimental data are excluded, the agreement may even be considered to be 
excellent. The results obtained with the Price & PaYdoussis model are not as good. 

For the normal triangular array (figure 8), the agreement between experimental 
data from various sources is very satisfactory for A,. < 20 approximately; beyond 
that, two types of behaviour, characteristic of the Teh & Goyder (1988) data, on the 
one hand, and of the Price & Zahn (1991) data, on the other, are found. In this case 
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also, the results obtained by the quasi-unsteady model are superior to those of the 
Price & Paidoussis model. In this case, however, the difference between the results of 
the order-1 and order-2 models is substantial for A,  3 20 approximately: whereas the 
order-1 model gives a curve in between the Price & Zahn and Teh & Goyder data, 
the curve predicted by the order-2 model is closer to the Price & Zahn data. 

In view of these results, it appears that the series representation of the transient 
function (equations (22)) seems to converge rapidly for the square in-line array, so 
that order-2 modelling does not yield significantly different results than the order- 1 
analysis. In contrast, for the normal triangular geometry, it is manifestly desirable to 
study the results with models of order higher than 2. 

4. Discussion 
The experimental results presented in the foregoing show that the quasi-unsteady 

model is an improvement on the model by Price & Paidoussis, which itself is an 
improvement on quasi-steady theory. This sensibly improved theoretical prediction 
can be attributed to a better account of unsteady mechanisms in the quasi-unsteady 
model, as discussed in $3.2. This has been achieved at the expense of a more complex 
(but also more physical) model for these phenomena, involving a memory effect of 
the flow rather than the flow retardation effect suggested by the earlier models. 

Nevertheless, as pointed out in $2.4, the quasi-unsteady model still does not 
represent all unsteady effects that may arise when a body is oscillating in a cross-flow. 
Only the interaction between the body motion and the mean steady flow is taken into 
account. For example, interactions between motion and periodic vortex shedding are 
entirely neglected. 

This might explain why in the case of square in-line arrays the model reproduced 
well the upper branch of the instability chart for A ,  < 0.3, but not the lower branch 
corresponding to Up,, e 2.8 = constant and associated with some of the Price & 
Paidoussis (1989) and Granger et al. (1993) experimental data. In fact, it was shown 
(Granger et al. 1993) that the fluidelastic instability in that case (front-row rather 
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than central-row tubes) interacted with periodic vortex shedding; this interaction, or 
interference, was attenuated with increasing turbulence levels deeper in the array. 
Furthermore, additional data recently obtained at McGill University and analysed at 
Electricite de France by the same modal identification method as that used previously 
by Granger et ul. (1993) have confirmed the Price & Pai'doussis results (1989) for 
A ,  < 0.3; although in this case the tube is closer to the centre of the array, these 
unpublished results show similar behaviour to that in the first row of Granger et al. 
( 1993). In particular, fluidelastic instability appears to be influenced by interaction 
with periodic vortex shedding. Finally, another argument that may be invoked to 
reinforce this explanation of the behaviour for A, ,< 0.3 in the square in-line array 
is based on the Strouhal number, S t ,  corresponding to the value of Uprc = 2.8; 
converted to C,., this gives S t  = 1.07, which is in very good agreement with the 
Weaver, Fitzpatrick & El Kashlan (1986) correlation for vortex shedding. 

At this stage of the discussion, the following important question has remained 
unanswered: what happens in arrays of.flexihle tubes'? I t  is recalled that the quasi- 
unsteady model was purposelq developed for the simplified case of a SDOF (single- 
degree-of-freedom) tube array. involving but one flexible tube, to facilitate the precise 
analysis of the underlying mechanisms for fluidelastic instability, without the added 
complications associated with inter-tube coupling. Rigorously, it is clear that further 
development is necessary in order to model the behaviour of fully flexible arrays. 
Nevertheless, a number of authors (Weaver & Grover 1978; Weaver & Koroyannakis 
1982; Lever & Weaver 1982; Lever & Rzentkowski 1993) have observed, on the basis 
of experiments in air, that the effect of neighbouring flexible tubes, at least insofar 
as fluidelastic instability is concerned, is rather weak. Granger et al. (1993) have 
similarly observed in their tests that the critical flow velocity of a flexible array in 
water cross-flow was close to that of a single flexible tube located in the first row of a 
rigid-tube array. Moreover, in the case of the flexible array, their results suggest that 
at the onset of fluidelastic instability there is an interaction with a vortex-shedding 
phenomenon, similarly to the case of a single flexible tube in the first row of the 
array. The influence of neighbouring tubes appears to be confined to amplifying the 
interaction phenomena and to homogenizing them within the array. This observation 
accords equally well with the instability charts where, for flexible tube arrays, the 
results cluster about Up,., 2 constant for A ,  less than 1 approximately (Weaver & 
Fitzpatrick 1988). 

It has therefore appeared worthwhile to undertake the following exercise: for 
square in-line. normal triangular and parallel triangular arrays, to compare on the 
same instability chart (i)  the results of the quasi-unsteady model of order 1, (ii) 
the experimental data assembled by Weaver & Fitzpatrick (1988) for flexible tube 
arrays, and ( i i i )  the zone of reduced flow velocities corresponding to 'reasonable' 
Strouhal numbers, obtained from the empirical correlations of Weaver & Fitzpatrick 
(1988) for pitch-to-diameter ratios in the range P / D  =1.3--1.5. For the square in-line 
and the normal triangular arrays we have used the parameters of the model as 
determined i n  $3.3 for SDOF tube arrays. For the parallel triangular geometry, the 
parameters ( x , ,  6 , )  of the order-1 quasi-unsteady model were obtained with the aid 
of the simplified procedure of 63.3 (equation (28)), utilizing Price & Paidoussis' (1986) 
values of dC,./i?F and CD and the critical flow velocity of one point in Weaver & 
Fitzpatrick's ( 1988) instability chart in the vicinity of rn6/pD2 = 2, where m = M J L .  
This gives u I  = 1.0, 6,  = 0.066. The results are summarized in figure 9. The quasi- 
unsteady model for SDOF tube arrays compares favourably to experimental data 
for d / p F ?  ? 3 for square in-line and normal triangular geometries. Moreover, the 
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FIGURE 9. Stability maps for flexible tube arrays: (a) square in-line geometry; (b )  normal triangular 
geometry; (c) rotated triangular geometry. Notation: 0, experimental data (Weaver & Fitzpatrick 
1988); -.- , quasi-unsteady model of order 1 with SDOF tube array parameters; - , boundary of 
the region of possible Strouhal excitation, from Weaver & Fitzpatrick (1988); - - - , quasi-unsteady 
model with parameters determined from one point of the flexible tube array stability map. 

procedure adopted for the rotated triangular arrays gives very satisfactory agreement 
for m6/pD2 3 0.3. Interestingly, by adopting a similar procedure, better results may 
be obtained for the other two array geometries also. This is illustrated in figure 9(a), 
where the results obtained by the quasi-unsteady model of order 1 are also shown, 
obtained with c11 = 1.10 and 61 = 0.20 and all other parameters the same. 

< m6/pD2 < 1.5 
for the square in-line geometry, lop2 < m6/pD2 < 1 for the normal triangular 
geometry, and < m6/pD2 d 0.3 for the rotated triangular one, a good correlation 

Considering small values of m8/pD2 next, it is noted that for 
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is revealed between the regions of vortex shedding and of fluidelastic instability. The 
results taken together suggest that for large mass-damping parameter values, i.e. 
O( 1) d A,  6 O( lo3), inter-tube coupling can have a significant effect (figure 9), but is 
clearly not the driving mechanism for fluidelastic instability. For low mass-damping 
parameter values, however, i.e. A ,  d O(1), it would appear that in a similar way as we 
have just seen for square in-line SDOF tube arrays, there may be a strong interaction 
between the ‘vortex shedding’ and ‘fluidelastic instability’ phenomena. Still, with the 
present state of knowledge, all this cannot but be conjectural. Nevertheless, the results 
of figure 9 certainly give a great deal of food for thought and suggest that further 
work would be useful. 

Finally, it will not have escaped the reader that the rotated square array geometry 
has been left out of this discussion. This is because its behaviour is peculiar and does 
not follow the pattern of the foregoing. As shown by Paidoussis et a/. (1989) for 
instance, a single flexible cylinder in such an array with P / D  = 1.5 does not develop 
fluidelastic instability; whereas, if several cylinders are flexible, instabilities can arise, 
as shown by Price & Kuran (1991). Evidently, a special discussion is required for this 
geometry, which is beyond the scope of this paper. 

5 .  Conclusion 
In this paper, a generalization of quasi-steady theory has been proposed and applied 

to the case of a flexible tube (cylinder) vibrating in the midst of an array of rigid 
tubes, submitted to a cross-flow (SDOF tube array). The new model, christened as 
‘the quasi-unsteady model’ to indicate both differences and similarities to the classical 
quasi-steady model, takes into account all of the most important unsteady effects 
neglected by this latter. It does so on the basis of an analysis of the behaviour of 
the continuity and Navier-Stokes equations, in the case of an impulsive movement of 
a body subject to cross-flow. This analysis is then readily extended to any arbitrary 
body motion using the convolution integral. Apart from the added-mass effects, the 
quasi-unsteady model accounts for the phenomena associated with reorganization 
of the flow, driven by diffusion-convection of the vorticity layer generated on the 
surface of the body, following each change in its velocity. This leads to unsteady 
terms in the fluid-dynamic forces representing an effect of memory in the flow, 
instead of the simple delay suggested previously by Lever & Weaver (1982) and 
Price & Pai’doussis (1986). These terms are characterized by transient functions for 
which a semi-analytical modelling has been proposed, involving linear combinations 
of decaying exponentials. An extension of the notion of the ‘flow retardation effect’ 
has thus been achieved and a formal basis in theory has been developed for this 
effect. 

The quasi-unsteady and Price & Paidoussis models were then compared to ex- 
perimental data for square in-line and normal triangular SDOF tube arrays. These 
comparisons were in terms both of instability charts and of the evolution of modal 
parameters with flow velocity. In both cases the quasi-unsteady model provides a 
very satisfactory agreement with experimental data, and achieves sensibly improved 
theoretical prediction compared to the Price & Paidoussis model. 

Analysis of the results led to the speculation that fluidelastic instability may in 
some cases be precipitated by an interaction with phenomena of the ‘vortex shedding’ 
type for small values of A ,  (i.e. A ,  6 0.3 approximately). Such mechanisms are not 
modelled by the quasi-unsteady model in its present form. 

Finally, motivated by this last remark and by the question of the influence of 
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neighbouring-tube movements on the development of fluidelastic instability in fully 
flexible tube arrays, an ‘experiment’ was done, consisting of comparing on the same 
instability chart: (i) experimental data for fully flexible arrays; (ii) the results by the 
quasi-unsteady model for a SDOF tube array; (iii) the region where vortex shedding 
should occur according to the empirical correlations of Weaver & Fitzpatrick (1988). 
The results obtained show that (a) a good correlation exists between the vortex 
shedding zones and the critical flow velocities for fluidelastic instability for low 
A,, i.e. A ,  < 1; (b )  a satisfactory agreement between the experimental data for 
flexible arrays and the single-degree-of-freedom quasi-unsteady model is obtained for 
1 < A, < lo3 approximately. This suggests a different interpretation of fluid-structure 
phenomena underlying fluidelastic instability in flexible arrays vis-u-vis the classical 
interpretation widely accepted today, which classifies the instability in terms of (i) a 
‘damping-controlled mechanism’ for low mass-damping parameters, without reference 
to possible interaction with vortex shedding, and (ii) a ‘stiffness-controlled mechanism’ 
for high mass-damping parameters, essentially controlled by inter-tube motions. Of 
course, what has tentatively been proposed in this paragraph is only an ‘exercise’, not 
a proof. Nevertheless, the results of figure 9 should, at the very least, motivate more 
in-depth research in that direction. 

The second author should like to acknowledge the support of NSERC of Canada 
and Le Fonds FCAR of Quibec, and Bill Mark’s assistance with some of the 
measurements. 
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